Erosion control guides

Erosion control guides

All about erosion, a complete guide? Soil erosion is a complex process that depends on soil properties, ground slope, vegetation, and rainfall amount and intensity. According to Montgomery, modifications in land use are one of the most impactful ways of accelerating soil erosion. These changes then have a cascade effect as the loss of fertile topsoil cover sends millions of tons of sediments into lakes and reservoirs, changing ecosystems and impacting agricultural production and water quality. This has been the case with the Bo River in Vietnam. Despite these types of soil erosion, as we have briefly mentioned above, if it wasn’t for human activities, today’s soils would be less susceptible to erosion and more resilient. What are the human causes behind soil erosion then?

Every year, rivers deposit millions of tons of sediment into the oceans. Without the erosive forces of water, wind, and ice, rock debris would simply pile up where it forms and obscure from view nature’s weathered sculptures. Although erosion is a natural process, abusive land-use practices such as deforestation and overgrazing can expedite erosion and strip the land of soils needed for food to grow.

Sea wave erosion is accomplished primarily by hydraulic pressure, the impact of waves striking the shore, and by the abrasion (wearing, grinding, or rubbing away by friction) by sand and pebbles agitated incessantly by the water (see wave-cut platform). Wave impact and hydraulic action are usually most devastating to human-made coastal features such as breakwaters or moles. The impact and hydraulic action of storm waves are the most significant upon shores composed of highly jointed or bedded rock, which are vulnerable to quarrying, the hydraulic plucking of blocks of rock. See even more details at what is erosion website.

The cover-management factor (C-factor) within the Revised Universal Soil Loss Equation (RUSLE) is used as an indicator of soil protection by different land-uses and management options (Renard et al. 1991). Yet, few studies have addressed its potential as a dynamic tool for erosion control (Panagos et al. 2015b). Experimentally determined values for the C-factor for most land uses and management systems are easily found in the literature (e.g., Pimenta 1998a). Moreover, both remote sensing and geographical information systems (GIS) techniques can be efficiently used to estimate the C-factor at landscape level (Wang et al. 2003; Lu et al. 2004; Durigon et al. 2014). Nevertheless, the literature does not report the use of the C-factor to address impacts of vegetation density changes over time under the same land use or management type. This provided the motivation for this research.

Terracing is a method of carving multiple, flat leveled areas into hills. Steps are formed by the terraces which are surrounded by a mud wall to prevent runoff and hold the soil nutrients in the beds. More commonly found in lesser developed nations due to the difficulty of using mechanized farming equipment in the terraces. Very popular in Asia for planting rice. A more enhanced version of Contour Plowing, maximum water retention is achieved by taking into account all the watershed properties when making the contour lines. The Keyline refers to topographic features linked to water flow. This allows the water to run off to run directly into an existing water channel, and prevent soil erosion caused by the water.